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The breakup of viscous liquid jets that contain surfactant, that is potentially above
the critical micelle concentration (CMC) is considered here within the long-wave
approximation. The soluble surfactant is assumed to be present in three phases: as
an interfacial species, bulk monomers and micelles. A model is developed for the
interaction between these phases and the surface tension which obeys a nonlinear
equation of state. The effects of the equation of state and the reservoir of surfactant
created by micelles on breakup are investigated. The long-wave approximation
naturally leads to a system of coupled one-dimensional equations that are solved
numerically. It is demonstrated that jet breakup and satellite formation are critically
affected by the presence of high surfactant concentrations above the CMC. This
manifests itself by the formation of unusually large satellites. We present extensive
numerical evidence that the mechanism for this phenomenon centres on the interplay
between Marangoni stresses and the nonlinear surfactant equation of state; the latter
exhibits a plateau at high interfacial concentrations.

1. Introduction
The breakup of jets and threads has received considerable attention in the literature

since the seminal theoretical work of Rayleigh (1878), and the subsequent analyses of
Tomotika (1935) and Chandrasekhar (1961); this is due to the obvious relevance of jet
breakup to fluid mixing, ink-jet printing and microfluidic applications (Anna, Bontoux
& Stone 2003; Link et al. 2004; Wang, Mohebi & Evans 2005). The large number
of papers that have appeared since these studies have been summarized in reviews
by Denn (1980), Eggers (1997), Lin & Reitz (1998) and Eggers & Villermaux (2008).
Research in this area has included linear temporal (Tomotika 1935; Chandrasekhar
1961; Rayleigh 1878) and spatial (Keller, Rubinow & Tu 1973; Leib & Goldstein
1986a, b; Chauhan et al. 2003) analyses; in the latter case, the growth of disturbances
in the axial direction is examined. Indeed, as shown in Chauhan et al. (2003), spatial
instabilities tend to dominate over temporal ones provided a threshold Weber number
is exceeded.

† Email address for correspondence: o.matar@imperial.ac.uk
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Given the long and thin nature of a jet of fluid there has been considerable interest
in developing one-dimensional models to study the nonlinear stability of jets, starting
with the work of Lee (1974) and continuing with the studies of Eggers (1993, 1995,
1997), Schulkes (1993), Eggers & Dupont (1994) and Papageorgiou (1995a, b). The
theory for Stokes flow by Papageorgiou and that for the viscous-inertial regime by
Eggers et al., which are based on the construction of local similarity solutions as
breakup is approached, have been verified experimentally (McKinely & Tripathi
2000; Rothert, Richter & Rehberg 2003). Other one-dimensional studies include
the work of Brenner, Shi & Nagel (1994), Shi, Brenner & Nagel (1994), Notz,
Chen & Basaran (2001) and Chen, Notz & Basaran (2002) and these have been
complemented by direct numerical simulations of the two-dimensional Navier–Stokes
equations (Wilkes, Phillips & Basaran 1999; Ambravaneswarn, Wilkes & Basaran
2002) as well as experimental work (Zhang, Harris & Basaran 1994; Zhang & Basaran
1995). Ambravaneswaran et al. (2002) have also found good agreement between the
predictions of the one-dimensional models with those of numerical solutions of the
Navier–Stokes equations.

Although surfactant effects are undoubtedly important there has been considerably
less work in this area, and the majority is based upon an assumption that the surfactant
is insoluble in the bulk. The effect of insoluble surfactants on the breakup of jets and
threads (Hansen, Peters & Meijer 1999; Kwak & Pozrikidis 2001; Craster, Matar &
Papageorgiou 2002; Timmermans & Lister 2002), the stability and breakup of liquid
bridges (Ambravaneswaran & Basaran 1999; Liao, Franses & Basaran 2006), the
deformation of droplets under extensional (Eggleton & Stebe 1998; Eggleton, Pawar
& Stebe 1999) and shear (Bazhlekov, Anderson & Meijer 2006) flow, the detachment
of viscous drops (Jin, Gupta & Stebe 2006) and the breakup of stretched bubbles
in viscous liquids (Hameed et al. 2008) has been examined in detail. These studies
have demonstrated the profound effect that surfactants can have on the dynamics
of necking and satellite drop formation: when the thread is surrounded by another
viscous fluid, the presence of surfactants retards the thinning processes and leads
to the development of secondary necks in the vicinity of a satellite drop (Kwak
& Pozrikidis 2001; Timmermans & Lister 2002); surfactants also decrease the size
of satellite drops when the thread is surrounded by vacuum as noted by Craster
et al. (2002). The work of Craster et al. (2002), which is based on the derivation
of evolution equations for the interfacial location, insoluble surfactant concentration
and the axial velocity component using long-wave theory, demonstrated that despite
the presence of surfactant, the behaviour near pinching remains governed by the
similarity solution of Eggers (1993). More recently, the work of McGough & Basaran
(2006) has demonstrated the possibility of repeated filament formation during the
breakup of threads covered with an insoluble surfactant even in the absence of noise;
the presence of noise is a necessity in the case of surfactant-free threads (Shi et al.
1994).

The effect of surfactant solubility on the stability of jets has also been studied.
Jin, Gupta & Stebe (2006) showed numerically that surfactant accumulation at
the location of maximal interfacial contraction reduces the local surface tension
and retards thinning; this is governed by the adsorption and desorption kinetics
at the interface. Liao et al. (2004) demonstrated experimentally that breakup of
a liquid bridge becomes increasingly asymmetric with increasing soluble surfactant
concentration due to the lowering of the local surface tension in relation to gravity. The
limiting lengths of liquid bridges was also found to increase with soluble surfactant
concentration, particularly above the critical micelle concentration (CMC). Satellite
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formation was noticeably absent provided bridge-stretching time scales exceeded those
associated with surfactant adsorption from the bulk onto the interface.

The behaviour of micellar surfactant solutions is quite distinct from that of
monomeric solutions and models are developed in this paper to incorporate and
study such differences. At equilibrium, the state of the surfactant in solution changes
at the CMC. For bulk concentrations below CMC, C < CMC, where C is the
bulk concentration, surfactants are present as monomers in solution which do not
aggregate but exist as single molecules. As the bulk concentration increases above
the CMC (i.e. C > CMC), micelles form; these are fluid-like aggregates with an
aggregation number n which is typically about 50–100. The aggregates form with their
hydrophobic tails oriented towards the centre of the micelle and their hydrophilic
heads oriented towards the fluid solvent. For bulk concentrations above the CMC the
concentration of monomers attains the uniform value at the CMC and monomers
coexist (at constant chemical potential) with micelles which are made up of the
remaining surfactant molecules in solution.

When an interface is present there is a strong change in the surface concentration
of surfactant Γ as the bulk concentration C increases. For bulk concentrations C <

CMC, the addition of surfactants to the solution increases the bulk chemical potential
μ (not to be confused with viscosity later used in the paper), which in turn increases
the interface chemical potential denoted by μs . A relationship between C and Γ , the
Langmuir adsorption isotherm, can be found by equating μ and μs and assuming an
ideal bulk solution and no interactions of adsorbed species on the interface. Defining
the maximum (unattainable) packing interfacial concentration as Γ∞ and considering
sufficiently dilute bulk solutions, we have the following expressions for the chemical
potentials: μ = μ0(T ) + RgT lnC, and μs = μs0(T ) + RgT ln((Γ/Γ∞)/(1 − Γ/Γ∞)),
where (μ0, μs0) represent reference chemical potentials, T is the temperature and
Rg is the universal gas constant. Equating these leads to the Langmuir equilibrium
relationship C = χ(Γ/Γ∞)/(1 − Γ/Γ∞) with χ = exp((μs0(T ) − μ0(T ))/RgT ), which
is equivalent to the equilibrium version of the flux relationship given later in (2.8a).
On the other hand if the bulk concentration is above the CMC (C > CMC), the
chemical potentials of the bulk and interface are constant; this in turn implies that
as surfactant is added to the system the surface concentration saturates to a constant
value Γc.

The variations in surface surfactant concentration affect the surface tension. As
described above for C < CMC, addition of surfactant to the bulk increases Γ and this
implies a decrease in the surface tension γ due to the isothermal Gibbs adsorption
equation, dγ = −Γ dμ = −Γ dμs . At equilibrium as C increases above the CMC,
however, the surface concentration remains constant at Γc and the surface tension
also remains constant at a value γ (Γc). This implies that at equilibrium and for
C > CMC, there is a decoupling between the values of the surface tension and the
addition of surfactant in the bulk.

The phenomena described above are valid at equilibrium when the chemical
potentials of the bulk and interface are equal. If kinetic barriers exist, however,
then inequalities between the chemical potentials arise. In the present work we
incorporate the effects of kinetic barriers into our models and evaluate numerically
their impact on the dynamics of liquid jets. In what follows we provide a brief
overview of the general phenomena that are possible in such cases but emphasize
that simulations are typically required to quantify the physics. Inequalities between
the chemical potentials of the bulk and interface can occur in a system that develops
dynamically if the time scales required to equilibrate bulk and surface chemical
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potentials are longer than those imposed by the underlying flow dynamics. There are
two mechanisms by which equilibrium can be disrupted by the presence of kinetic
barriers. First, if the desorption kinetics is hindered then this leads to a difference
between bulk and surface chemical potentials. Several examples can be constructed:
(i) If we are at equilibrium with a bulk concentration below CMC, and the solution
in the bulk is suddenly diluted, then in the presence of kinetic barriers that hinder
desorption, the surface concentration Γ will be out of equilibrium with the suddenly
reduced bulk concentration. (ii) If we are at equilibrium with a bulk concentration
below CMC and a surface element is suddenly contracted, then if desorption into
the bulk is hindered we end up with surface concentrations above the equilibrium
value. (iii) If initially we are at equilibrium with a bulk concentration above CMC
C > CMC and corresponding surface concentration Γc, and a surface element is
suddenly contracted while desorption into the bulk is hindered, then we can obtain
values of Γ > Γc which in turn imply values of the surface tension below γ (Γc).
Second, the equilibrium between the monomer and micelle chemical potentials can
be disrupted if the dissociation kinetics is hindered. As an example consider a bulk
concentration above the CMC which is suddenly diluted to a value below the CMC.
If the dissociation kinetics is slow then micelles will coexist with monomers seen at
bulk concentrations below the CMC.

For completeness we discuss another important regime where kinetic barriers are
absent. It has been shown by Stebe & Maldarelli (1994) that if kinetic barriers
do not hinder the adsorption/desorption processes between bulk and interface, nor
the exchange between micelles and monomers, then micellar systems can support
constant chemical potential regions in interfacial flows. The result is the creation
of regions which are free of Marangoni stresses and where the surface tension is
constant and equal to γ (Γc). This is the so-called remobilization regime due to the
removal of Marangoni stresses and the behaviour of the system as if it was clean,
albeit at a lower value of the surface tension. In this diffusion-limited regime the
surface concentration is in local equilibrium with the bulk sublayer concentration
according to the adsorption isotherm described earlier. Such regimes have been
investigated numerically for rising gas bubbles (see, for example, Wang, Papageorgiou
& Maldarelli 1999, 2002). The present work does not specifically study this particular
limit but instead we choose to include kinetic barriers in order to evaluate and predict
behaviour that may not be observed in clean systems (equivalently remobilized
systems where a uniform but lower surface tension would be present, at least in large
domains). A different model needs to be used in the diffusion-limited regime and we
leave this for the future.

To the best of our knowledge, models for the breakup of jets in the presence of
surfactant at high concentrations, above the CMC, have not yet been examined in the
literature; this issue is addressed in the present paper. The question of being above or
below the CMC and being able to model the surfactant dynamics coupled with the
fluid mechanics is fundamental not just in jet breakup, but also in many other areas
of interfacial fluid mechanics. We develop a long-wave model for the jet dynamics
that comprises evolution equations for the interface, the axial velocity component
and the interfacial, monomer and micellar surfactant concentrations; the model is
closed by an appropriate surfactant equation of state. This work builds on that of
Edmonstone, Craster & Matar (2006) carried out on the spreading of surfactant
on thin liquid films above the CMC. The extended model developed here accounts
for Marangoni stresses, surface and bulk diffusion, sorption kinetics and micellar
formation and breakup kinetics. This model reduces to that of Craster et al. (2002)
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for a jet covered with an insoluble surfactant in the appropriate limits. We demonstrate
through a parametric study that the presence of surfactant at high concentration alters
qualitatively the breakup dynamics and the formation of satellites. This will serve
to motivate fully nonlinear two-dimensional simulations and experimental work to
investigate the predictions and mechanisms that we describe.

The rest of this paper is organized as follows: The issues related to the presence of
micelles, discussed above, are discussed in § 2. In this section, we provide details of the
model formulation and pay particular attention to the choice of surfactant equation
of state and its behaviour at high concentrations. The results of our parametric study
are discussed in § 3 and, finally, concluding remarks are given in § 4.

2. Formulation
2.1. Governing equations

We consider the dynamics of a Newtonian and incompressible thread of an initially
constant radius R, of viscosity μ and density ρ. The thread is laden with surfactant,
which is present at potentially high concentrations that exceed the CMC; the presence
of surfactant influences the capillary-driven breakup of the thread. We use cylindrical
coordinates (r, z) to describe the axisymmetric thread evolution: r = 0 and r = S

locate the thread axis and the interface, respectively; the gas overlying the thread is
assumed to be inviscid.

The dynamics are governed by the following equations:

∇ · u = 0, (2.1)

ρ (ut + u · ∇u) = −∇p + μ∇2u, (2.2)

Γt + ∇s · (usΓ ) + Γ n · (∇s · n) u = Ds∇2
sΓ + JΓ c, (2.3)

ct + u · ∇c = Db∇2c − nJcm, (2.4)

mt + u · ∇m = Dm∇2m + Jcm, (2.5)

Equations (2.1)–(2.5) represent the equations of mass and momentum conservation,
convective-diffusion equations for Γ , c and m, the surfactant concentrations at the
interface, and in the bulk as monomers and micelles (comprising n monomers),
respectively. Here, u = (u, w) is the velocity field in which u and w are its radial and
axial components, respectively, p represents pressure and t denotes time; Ds , Db and
Dm represent diffusion coefficients for the interfacial, monomer and micellar species,
respectively; ∇s = (I − nn) · ∇ wherein n = (−Sz, 1)/(1 + S2

z ) is the outward pointing
normal and I is the identity tensor.

The exchange between the different phases proceeds as follows. Firstly, at the
interface

k1

s + c′ � Γ ′

k2

(2.6)

which represents the transfer of a surface molecule Γ ′, into the bulk phase c′, thus
creating a space s, at the free surface or conversely a monomer from the bulk
using up a space at the interface; this model leads, at equilibrium, to the Langmuir
isotherm and accounts for an effect, important at high concentrations, which is that
the interfacial surfactant monomer may fully pack the interface. Implicit in the model
is that the total space at the interface is limited. Secondly, the micelles and bulk
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monomer are related via
k3

nc′ � m′

k4

(2.7)

which represents the creation of a micelle m′, in the bulk phase from n free bulk
surfactant molecules, or the breakup of a micelle into n bulk monomers.

These relations carry with them certain implicit and natural assumptions. For
instance, it is assumed that the micelles do not adsorb directly onto the interface, but
that they must completely disassociate first into bulk monomers. It is also assumed
that there is a strongly preferred micelle size n, which is indeed often the case in
reality (Hunter 1991) and so the micelles are monodisperse.

The associations represented in (2.6) and (2.7) are turned into fluxes using the law
of mass action to give JΓ c and Jcm as

JΓ c = k1c

(
1 − Γ

Γ∞

)
− k2Γ at r = S(z, t),

Jcm = k3c
n − k4m; (2.8)

these represent the sorptive flux at the interface JΓ c and a flux that controls the
breakup and formation of micelles Jcm. This is the model utilized by Edmonstone
et al. (2006) in their study of surfactant-laden droplet spreading above the CMC
in which trends followed by experiment and theory were shown to be in qualitative
agreement. The success of that modelling motivates the use of the fluxes and dynamic
coupling with the fluid dynamics in the present context. It is worth noting that the
methodology adopted above would allow one to incorporate different micellar models
through these flux terms if desired.

The boundary conditions at r = S(z, t) are

[n · T · n] = γ κ, [n · T · n] = t · ∇sγ, St + wSz = u, (2.9)

where κ is the interfacial curvature

κ =
1

S
(
1 + S2

z

)1/2
− Szz(

1 + S2
z

)3/2
. (2.10)

Here, T = −pI + μ(∇u + ∇uT ) is the stress tensor, and γ represents surface tension.
At the interface, the following conditions hold for the monomers and micelles:

−Db(n · ∇c) = JΓ c, Dm(n · ∇m) = 0. (2.11)

Notably, these implicitly assume that the micelles must break down into bulk
monomers before they are absorbed at the interface. Finally, at r = 0, we demand
regularity.

The total mass of surfactant M is given by

M = 2π

∫ L

0

∫ S

0

r(c + nm) dr dz + 2π

∫ L

0

SΓ dz, (2.12)

where L is the domain length.

2.2. Equations of state

In order to close the governing equations and boundary conditions, it is necessary
to specify a surfactant equation of state, which incorporates the dependence of the
surface tension γ on the surfactant interfacial concentration Γ . It is essential for this
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Figure 1. An illustration of the equations of state versus experimental data (squares), taken
from Song et al. (2006). Notably the Langmuir model does not capture the plateau behaviour
at high concentrations; the modified law (2.14) does so, as does the Sheludko model.

equation to be nonlinear since the interfacial concentration approaches and exceeds
the one associated with maximal packing.

The Langmuir and Frumkin equations of state are given by

γ = γ0 + RgT Γ∞

[
ln

(
1 − Γ

Γ∞

)
+

1

2
K

(
Γ

Γ∞

)]
, (2.13)

where T is the temperature, Γ∞ the maximal packing concentration, Rg the universal
gas constant and γ0 the surface tension of a surfactant-free interface. The constant
K (=0 for Langmuir and �=0 for Frumkin) gives a measure of any repulsion (>0)
or attraction (<0) between the individual monomers on the surface. Experimental
studies, for instance the data for the surfactant polyoxyethylene alkyl ethers C14E6

shown in figure 1 (Song et al. 2006), show that the Langmuir or Frumkin laws fit the
data well over the majority of the concentration range.

However, there is a glaring issue as Γ → Γ∞ with the Langmuir equation of state
giving unphysically negative and ultimately divergent surface tension values. The
experiments show a plateau in surface tension above Γ = Γc, where for the Langmuir
model

Γc

Γ∞
= 1 − exp

(
γc − γo

RgT Γ∞

)
, (2.14)

such that γ = γc for Γ > Γc. Therefore we adopt a modified Langmuir equation of
state which has γ given by (2.13) for Γ < Γc and by γc for Γ > Γc. An illustration
of this law, together with data and the conventional Langmuir fit from Song et al.
(2006), is shown in figure 1. The parameters take the values Rg = 8.314 J K−1mol−1,
T = 300 K, Γ∞ = 2.4 × 10−6 mol m−2, γ0 = 72 dyn cm−1, γc = 32 dyn cm−1 and
R = 106/8.35 m3 mol−1 in the dimensional equilibrium equation connecting bulk
monomers and interfacial monomers. The Frumkin model is also compared to the
data in Song et al. (2006) and it provides a minor improvement to the data fit, but it
is not substantially different in character to merit further consideration here.

The Langmuir model, and its Frumkin cousin, are not the only equations of state
that one could use. The Sheludko model is also popular

γ =
γ0

(1 + θΓ/Γ∞)3
, θ = (γo/γc)

1/3 − 1
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as it naturally asymptotes to the maximal surface tension value. For comparison it too
is illustrated in figure 1. The fit is poor, for this surfactant data (R = 2.5×103 m3 mol−1

is taken to improve the fit), but it has provided an excellent data fit for several other
surfactants, notably the oleic acid experiments of Gaver III & Grotberg (1992); we
do not utilize this equation of state further in this paper.

2.3. Scaling and long-wave asymptotics

The governing equations, boundary conditions and surface equation of state are
rendered dimensionless using the following scaling:

(r, S) = R(r̃ , S̃), z = Lz̃, (u, w) = V

(
1,

L
R

)
(ũ, w̃), t =

(
R
V

)
t̃ , p =

(γo

R

)
p̃,

Γ = Γ∞Γ̃ , c = cCMC c̃, m =
(cCMC

n

)
m̃, γ = γoγ̃ ,

JΓ c =

(
V Γ∞

R

)
J̃Γ c, Jcm =

(
V cCMC

R

)
J̃cm, M = 2πR2LΓ∞M̃, (2.15)

where L and V ≡ γo/μ are characteristic length and velocity, respectively; we also
define ε ≡ R/L 	 1. The tildes are suppressed henceforth.

We expand the flow variables and surfactant concentrations in powers of ε and the
leading-order equations are given by (decorations designating leading-order quantities
have been suppressed)

(ru)r
r

+ wz = 0, pr =

[
(ru)r

r

]
r

,
(rwr )r

r
= 0, (2.16)

Γt +
(SwΓ )z

S
+

Γ (u − wSz)

S
=

1

Pes

(SΓz)z
S

+ JΓ c, (2.17)

ct + ucr + wcz =
1

ε2Peb

[
1

r
(rcr )r + ε2czz

]
− Jcm, (2.18)

mt + umr + wmz =
1

ε2Pem

[
1

r
(rmr )r + ε2mzz

]
+ Jcm, (2.19)

where we have set Re = ε2R̂e. Here, (Pes, P eb, P em) ≡ (V L2/R)(1/Ds , 1/Db, 1/Dm)
are Peclet numbers and the fluxes read

JΓ c = ks [Rc(1 − Γ ) − Γ ] , at r = S, Jcm = km(cn − m), (2.20)

where the dimensionless parameters are

ks ≡ k2R/V, R ≡ k1cCMC /k2Γ∞, km ≡ k4R/V cCMC ≡ (k4/nk3)
1/(n−1). (2.21)

At r = S, we have the following leading-order boundary conditions:

−p + 2(ur − wrSz) = −γ κ, wr = 0, St + wSz = u, (2.22)

with the non-dimensional curvature as

κ =
1

S
(
1 + ε2S2

z

)1/2
− ε2Szz(

1 + ε2S2
z

)3/2
, (2.23)

that is, we retain the full surface curvature. This is a standard device used in the
literature (see, for instance, Eggers 1997; Craster et al. 2002) to both aid the stability
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of computations and to introduce the physically important high wavenumber cutoff.
The flux conditions at r = S(z, t) are given by

−cr + ε2Szcz = ε2PebβJΓ c, mr − ε2Szmz = 0, (2.24)

where

β = Γ∞/RcCMC (2.25)

gives a measure of solubility. The dimensionless leading-order surfactant equation of
state is given by

γ = 1 + Σ ln(1 − Γ ) for Γ < Γc,

= γc for Γ � Γc, (2.26)

where Σ ≡ RgT Γ∞/γo and Γc = 1 − exp([γc − 1]/Σ) represent a surface elasticity
parameter and the critical value of the surfactant interfacial concentration above
which the surface tension remains equal to γc. The dimensionless total mass of
surfactant reads

M =

∫ L

0

∫ S

0

r

β
(c + m) dr dz +

∫ L

0

SΓ dz. (2.27)

The following O(ε2) equations are also required:

R̂e(wt + uwr + wwz) = −pz + wzz +
(rw1r )r

r
, (2.28)

2(ur − wz)Sz + uz + w1r = γz, at r = S. (2.29)

Here, w1 denotes the O(ε2) axial velocity component.
Following a procedure similar to that employed by Craster et al. (2002), the

equations governing the evolution of S, w and Γ are easily found to be

St + wSz + 1
2
wzS = 0, (2.30)

R̂e(wt + wwz) − 3wzz − 6wzSz

S
+ (γ κ)z − 2γz

S
= 0, (2.31)

Γt + wΓz +
Γ

2
wz =

1

Pes

1

S
(SΓz)z + ks(Rc(1 − Γ ) − Γ ). (2.32)

These equations reduce to those derived by Craster et al. (2002) in the limit ks → 0 for
which the surfactant is treated as insoluble. In order to derive similar equations for c

and m, we adapt below a procedure previously employed in studying surfactant-driven
thin films as in Jensen & Grotberg (1993) and Edmonstone et al. (2006).

2.4. Cross-sectional averaging

We assume that radial diffusion is rapid and consequently that ε2(Peb, P em) 	 1. We
set (c, m) = (c0, m0)(z, t) + ε2(Peb, P em)(c1, m1)(r, z, t) where

1

πS2

∫ S

0

2πr(c1, m1) dr = 0. (2.33)

As a result of the above decomposition, we have

c0t + wc0z =
1

r
(rc1r )r +

1

Peb

c0zz − km

(
cn
0 − m0

)
, (2.34)
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and the following condition at r = S

c1r =
1

Peb

Szc0z − βJΓ c. (2.35)

Cross-sectional averaging of (2.34) and using (2.35) yields the following evolution
equation for c0:

c0t + wc0z =
1

S2Peb

(
S2c0z

)
z

− 2β

S
JΓ c − km

(
cn
0 − m0

)
. (2.36)

Using a similar procedure, we have the following evolution equation for m0:

m0t + wm0z =
1

S2Pem

(
S2m0z

)
z
+ Jcm. (2.37)

The breakup dynamics are governed by (2.30)–(2.32), (2.36) and (2.37) coupled with
the fluxes defined in (2.20). In what follows, the subscript ‘0’ is suppressed.

We scale out R̂e by making the following changes of variables and rescalings:

S = R̂eŜ, t = R̂et̂, w =
1

R̂e
ŵ,

ε̂ = εR̂e,
1

P̂ ei

=
R̂e

P ei

, k̂i = R̂eks, β̂ =
β

R̂e
(2.38)

which finally yields the following evolution equations (after dropping the hat
decoration):

St + wSz + 1
2
wzS = 0, (2.39)

(wt + wwz) − 3wzz − 6wzSz

S
+ (γ κ)z − 2γz

S
= 0, (2.40)

Γt + wΓz +
Γ

2
wz =

1

Pes

1

S
(SΓz)z + ks(Rc(1 − Γ ) − Γ ), (2.41)

ct + wcz =
1

S2Peb

(
S2cz

)
z

− 2β

S
ks(Rc(1 − Γ ) − Γ ) − km(cn − m), (2.42)

mt + wmz =
1

S2Pem

(S2mz)z + km(cn − m). (2.43)

Owing to the scaling on β , the mass of surfactant is unaffected by this rescaling and
remains as

M =

∫ L

0

(
S2

2β
(c + m) + SΓ

)
dz. (2.44)

These involve the equation of state, γ , from § 2.2 and the curvature, κ , from (2.23).

2.5. Equilibrium

The most natural initial conditions are those of equilibrium where JΓ c = Jcm = 0.
This condition, subject to the mass of surfactant constraint, gives

M

L
=

1

2β

(
co + cn

o

)
+

Rco

1 + Rco

, (2.45)

with mo = cn
o and

Γo =
Rco

1 + Rco

. (2.46)
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Figure 2. The equilibrium states, in the absence of micelles, for (a) highly soluble
monomers, β = 0.2, and (b) weakly soluble monomers, β = 2, for R = 1, 10, 100.

In the absence of micelles,

M

L
=

1

2β
co +

Rco

1 + Rco

, (2.47)

with Γo given by (2.46), and typical equilibrium values are shown in figure 2. This figure
illustrates the physical importance of R; this parameterizes, for a fixed solubility β ,
the attraction of the interface to surfactant monomers with large R corresponding to
a strong affinity to the interface. It is notable that once the non-dimensional mass rises
above unity, then as R increases the interfacial surfactant concentration approaches
maximal packing. Low values of R require much higher mass concentrations before
this becomes evident.

The parameter β quantifies the relation between the maximal packing interfacial
surfactant concentration and the bulk concentration at which micelles are formed, i.e.
it is a measure of the solubility with β 	 1 being highly soluble and β 
 1 nearly
insoluble.

Much larger mass concentrations mean that one enters a situation where micelle
formation becomes inevitable. The additional micelle species is characterized by the
micelle size n of which n � 10 is typical. The resulting equilibrium states are shown
in figure 3 for highly soluble and less soluble monomers. Interesting limits include
R 
 1 and β 
 1 (attracted to the interface and weakly soluble) which ensure that
the monomers remain mainly at the interface until the available mass exceeds β ,
thereafter monomers must accumulate in the bulk and form micelles. An example
of this behaviour is shown by the dotted curves in figure 3(b, d, f). The more
soluble case, figure 3(a, c, e), readily forms micelles at lower mass concentrations
and apart from the interfacial concentration Γ , the surfactant is dominated by
the micellar species through mo = cn

o; in all cases the micelle concentration is
effectively zero until co → 1, i.e. as the critical micelle concentration is approached
when their formation is rapid and their concentration increases strongly; this is
in line with the physical chemistry where experiments show rapid transitions once
the CMC is exceeded. The bulk concentration co now naturally asymptotes to a
value close to unity, as the available surfactant mass increases, unlike the behaviour
shown in figure 2, with the excess bulk monomers now absorbed into a reservoir
of micelles.
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Figure 3. The equilibrium states in the presence of micelles, n = 10, for (a, c, e) highly
soluble monomers β = 0.2 and (b, d, f) less soluble monomers β = 2, for R = 1, 10, 100.

3. Discussion of results
In this section, we present a discussion of the results of the parametric study.

3.1. Numerical simulations

The system of coupled highly nonlinear partial differential equations (2.39)–(2.43)
is solved numerically using the highly efficient PDE solver EPDCOL (Keast &
Muir 1991). This numerical routine, which utilizes finite-elements to discretize the
spatial derivatives and Gear’s method in time, has been previously used to study the
breakup of single and compound jets by Craster et al. (2002) and Craster, Matar
& Papageorgiou (2005). The numerical predictions were validated against those of
another routine, based on the finite-difference approximation in space (Craster &
Matar 2007), as well as against the predictions of linear theory.

Typically, 6000 grid points were used to carry out the computations with
convergence being achieved upon mesh refinement; we have also ensured that mass
is conserved to within 0.1 % in all computations. The simulations were halted as
breakup is approached when S reached values of order 10−4 locally; beyond this
point, spatial derivatives could no longer be resolved with sufficient accuracy.

Numerical solutions are determined starting from the following initial conditions:

S(z, 0) =
10

9
[1 − 0.1 cos(πz/5)], Γ = Γo, c = co, m = mo, w = 0, (3.1)
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Figure 4. A ‘phase diagram’ in the (R,M/L) space detailing the shape of the interface S
(the reflection −S is also shown to emphasize the axisymmetric character of the problem)
immediately prior to breakup; note the variation in the vertical axis between the panels. The
parameter R characterizes the attraction of surfactant to the interface and is fixed for each
row, and M/L quantifies the amount of surfactant present and is fixed for each column. Here,
β = ks = km = 1, γc = 0.4 and ε = 0.01. The inset to M/L = 10, R = 1 shows the creation of
a very small satellite just before breakup in the central region.

in −5 < L < 5; these correspond to an initially motionless thread of slightly perturbed
interface, containing surfactant under equilibrium conditions. The applied disturbance
is chosen to be in the band of unstable wavenumbers found using linear theory. The
solutions are obtained subject to the following boundary conditions:

w(±L, t) = 0, Sz(±L, t) = Szzz(±L, t) = 0, Γz(±L, t) = cz(±L, t) = mz(±L, t) = 0.

(3.2)
Due to the parametric richness of the present problem, we focus on the physico-

chemical parameters β , ks , km, R, γc and M , whose effect on the breakup dynamics
have not been previously explored extensively in the literature. The values of the
Peclet numbers will be fixed for the remainder of this paper, Pes = Peb = Pem = 10,
as will the values of the surface elasticity Σ = 0.5, the high-concentration surface
tension plateau, γc = 0.4, and the aspect ratio, ε = 0.01; the latter appears in the
expression for the interfacial curvature. The ‘base’ case that will be studied below is
parameterized by β = ks = km = M/L = 1 and n = 10. The effect of each of these
parameters, with the exception of n, on the dynamics will be explored.

In order to motivate the discussion of the results, we show in figure 4 a ‘phase
diagram’ in (R, M/L) space that demonstrates the effect of these parameters on the
interfacial shape immediately prior to breakup; the rest of the parameters correspond
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Figure 5. The effect of the attraction of surfactant to the interface R on interface position
S, interfacial Γ , bulk c and micelle m concentrations, shown in (a)–(d ) very close to breakup,
that is when Smin ∼ 10−4. Here, M/L = 0.5 and the rest of the parameters remain unaltered
from figure 4.

to the ‘base’ case. It is shown clearly that in the large majority of the cases studied,
the breakup dynamics are accompanied by satellite formation. It is also notable
that the cases represented by the parameters corresponding to the last row and first
column (and M/L = 1, R = 1) give rise to relatively small satellites of roughly similar
size. The cases represented by the parameters corresponding to the four satellites in
M/L = 1, 10 and R = 10, 100 on the other hand, have markedly larger satellites
and/or a different shape; the M/L = 10, R = 1 case has a satellite, which is almost
indiscernible, as breakup is approached. We now explain the dynamics leading to these
results, dividing the discussion into two subsections for the flow behaviour below the
CMC (M/L < 1) and above it (M/L > 1).

3.2. Lower than the CMC: M/L < 1

Figure 5 shows the effect of varying R in the range 0.1 � R � 100 on the profiles
of S, Γ , c and m immediately prior to breakup with M/L = 0.5 and the rest of the
parameters remain unchanged from the ‘base’ case. In all of the cases shown in figure
5, the thread thins at the flow origin under the action of capillary forces that act to
minimize its interfacial area, ultimately leading to breakup. The flow is accompanied
by the rapid transport of surfactant away from the thinning region and the formation
of surfactant-laden satellite drops during its latter stages. The range of R considered
spans the full spectrum of surfactant behaviour: at low R values, the surfactant has
a preference for micellar formation; high R values are associated with an affinity for
the interface and low micelle concentrations, as shown in figure 5(b–d ).
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Figure 6. The effect of attraction of surfactant to the interface R on the temporal variation
of wmax , (a) the maximal axial velocity, (b) the minimal interfacial radius Smin. Also shown in
(a) is a line of constant slope equal to −1/2, which represents the dynamics expected from a
balance between inertial, capillary and viscous forces as breakup is approached (Eggers 1997),
that is as τ = tb − t → 0 where tb is an estimate of the breakup time. The filled circles in (b)
designate the minimal thickness for the surfactant-free and insoluble surfactant cases. The rest
of the parameters remain unaltered from figure 5.

The axial velocity increases progressively in the breakup region as depicted by fig-
ure 6(a). This is to be expected since the velocity rises beneath the thinned region due
to the increase in capillary pressure there. Scalings for S, w and z in the surfactant-free
case can be obtained by balancing inertia, the capillary pressure gradient and viscous
retardation in (2.39) and (2.40): z ∼ τ 1/2, S ∼ τ and w ∼ τ−1/2 as τ = tb − t → 0
where tb is an estimate of the breakup time Eggers (1997). So that the dynamics
evolve towards these scalings for the case of insoluble surfactant has been previously
confirmed (Craster et al. 2002). Close inspection of figure 6(a) reveals that these
scalings are also approached in the present case for all R values examined due to the
‘sweeping’ of the surfactant away from the thinning region. Notable in figure 5 (b)–(d)
are steep gradients in the surfactant concentrations near the point of pinch-off, the
surfactant is swept out to relatively stagnant zones where it accumulates unable to
escape; when viewed in dimensional terms the gradients are not as severe as they
appear in the current scaling.

The evolution of the thread for R = 0.1 resembles that associated with the
surfactant-free case, as shown in figure 6(b), in which the temporal evolution of
the minimal thread radius is plotted; the dynamics of the surfactant-free case are
computed by solving (2.39) and (2.40) with γ = 1. This observation also explains
the weak variation in the final satellite shape in the last row of figure 4: despite
the increase in the total surfactant mass, only a relatively small fraction of this is
transported to the interface. The R = 100 case mimics closely that of a thread covered
with an insoluble surfactant, obtained via solution of (2.39)–(2.41) with ks = 0, as
also shown in figure 6(b). For R between the two extreme cases, increasing R retards
the evolution towards breakup and gives rise to smaller satellite drops (see figure 7a).
This is due to an associated increase in the relative significance of Marangoni stresses
that induce flow from low-γ (either side of the thinning region) to high-γ regions
(the thinning region), which counteracts the capillary-driven thinning. The surfactant
monomer concentration in the bulk, c, approaches the dynamic equilibrium with
c ≈ Γ/(R(1 − Γ )).
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M/L = 0.5 and the rest of the parameters remain unaltered from figure 4.

The effect of surfactant solubility, parameterized by β , on the breakup dynamics
is also of interest. Figures 8 and 9, are essentially equivalent to figures 5–7 that
showed the effect of R; here R = 1 and the rest of the parameters take their ‘base’
case values. One notes a correspondence between the trends observed in the two sets
of figures: the case of a weakly (highly) soluble surfactant, characterized by large
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Figure 9. The effect of solubility β on the minimal interfacial radius Smin (a), and the satellite
drop (S and −S) shape as well as the profiles of Γ and c immediately prior to breakup (b)–(d ),
respectively. The rest of the parameters remain unaltered from figure 8. The filled circles in (a)
designate the minimal thickness for the surfactant-free and insoluble surfactant cases.

(small) β values, is associated with high (low) Γ values and large (small) Marangoni
gradients that retard (accelerate) breakup and give rise to smaller (larger) satellite
drops. The bulk surfactant concentrations, c and m, are shown normalized by β so
that, if re-dimensionalized, these curves give the surfactant concentration relative to
the maximal interfacial packing value (see figure 8(c, d )).

The nonlinear equation of state plays a minor role as the surfactant concentrations
are rarely above the critical value (Γc = 0.7 for the parameters considered here), for
which the surface tension plateau occurs. The only regions where this may occur
in the present case are at the edges of the domain which are benign as far as the
break-up and thinning processes are concerned. We have also found the results to be
weakly dependent on ks and km for M/L < 1.

3.3. At and above the CMC: M/L � 1

As the CMC is approached, we expect that the nonlinear equation of state featuring
the surface tension plateau above the critical value Γc may play a role. The effect of
varying R on the flow profiles immediately prior to breakup is shown in figure 10 for
M/L = 1 and the rest of the parameters remaining at their ‘base’ values. It is clearly
seen that whereas the profiles associated with R = 0.1 and R = 1 resemble closely
those previously observed with M/L = 0.5, the profiles generated with R = 10 and
R = 100 are distinctly different. The latter are characterized by much larger satellite
drops with Γ > Γc = 0.7 over large proportions of the computational domain.

At such large values of R and with M/L = 1, there appears to be a sufficient
mass of surfactant to ‘flood’ the interface with monomers, pushing the interfacial
concentration beyond Γc and γ to γc. As a result, the thread undergoes breakup
driven by an approximately uniform surface tension, in the absence of retarding
Marangoni stresses. Then, after a sufficient amount of interfacial species has been
swept away from the thinning region, Γ decreases locally below Γc and causing γ to
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Figure 10. The effect of attraction of surfactant to the interface R on S, Γ , c and m, shown
in (a)–(d ) at times very close to breakup, that is when S = 10−4. Here the mass of surfactant
present is fixed as M/L = 1 and the rest of the parameters remain unaltered from figure 4.

rise above γc in the thinning region; this takes place at an earlier time in the dynamics
at R = 10 and R = 100 than in the case of lower R values, at which the thread radius
is relatively thick (this will be discussed further below in connection with figure 11a).
The sudden local increase in γ drives Marangoni flow towards the thinning region,
which leads to the formation of a much larger satellite drop than could be achieved
with R = 0.1, 1. This provides a speculative explanation for the reasons underlying
the results presented in the middle column of figure 4 which will be considered in
more detail in § 3.4.

Figure 11(a) shows that although the overall trend is that an increase in R retards
the thinning process, close inspection of this panel reveals the formation of a ‘shoulder’
in the Smin vs time plot for R = 10 and R = 100 at t ≈ 30. We speculate at this
juncture that this coincides with the time at which Γ < Γc and γ > γc local to the
thinning region and the onset of the satellite-forming Marangoni-driven flow towards
this region. It should be noted that the value of Smin at the onset of this flow is
much larger than at the onset of satellite formation for R = 0.1 and R = 1. This is
one of the main contributors to the large size of the satellite drops formed at high
R values. We have also found that this size increases with increasing γc (not shown)
since γ > γc in the thinning region at an earlier time and for larger Smin.

As we head far above CMC, to M/L = 10, corresponding to the last column
of figure 4, we find that the final satellite shapes for R = 10, 100 are smaller than
those for M/L = 1 but significantly larger than those found when below CMC.
The mechanism by which they are formed is identical to that for M/L = 1 except
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Figure 11. The effect of attraction of surfactant to the interface R on the minimal interfacial
radius Smin (a), and the satellite drop shape (S and −S) as well as the profiles of interfacial
Γ and bulk c surfactants immediately prior to breakup (b)–(d ), respectively. The rest of the
parameters remain unaltered from figure 10. The filled circles in (a) designate the minimal
thickness for the surfactant-free and insoluble surfactant cases. In (c) the Γ profiles for
R = 10, 100 are absent since they are off the scale.

that the reservoir of surfactant acts to moderate the effect of the nonlinear equation
of state. The large values of R allow the surfactant to preferentially collect at the
interface. Decreasing R leads, at R = 0.1, to the surfactant preferring the bulk and
the surfactant plays a minor role in the dynamics. The intermediate case R = 1 is
interesting as there is an interplay between surfactant replenishing the interface in
the central region and the formation of the satellite, the result being that the satellite
splits in half; this is interpreted in detail in § 3.4.

3.4. Mechanisms for satellite formation

In this section, we contrast the different mechanisms leading to the formation of the
satellite drops shown in figure 4. The satellites fall into two classes: the bottom two
rows and the left column for which the satellites are small; and the four satellites for
M/L = 1, 10 and R = 10, 100 that are distinctly larger in size. We consider the ‘small’
satellites first.

The details of satellite formation for M/L = 1 and R = 1 are shown in figure 12
together with ‘diagnostics’ that help determine the underlying mechanism. It is notable
that the satellite only forms just before breakup (cf. figure 12a), and is accompanied
by a small rise in the interfacial concentration there. One can also decompose the
axial fluid acceleration in (2.40) into its constituents, which are shown immediately
prior to breakup in figure 12(c); also shown in this panel is the ‘final’ shape of the
interface. It can be seen that inertia acts to decelerate the fluid in the neighbourhood
of the origin. Although it is initially a small effect, it eventually creates the local
flow reversal necessary for satellite formation. The surfactant distribution also creates
a flow that opposes jet breakup: Marangoni flows are driven from regions of high
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Figure 12. Satellite formation for surfactant mass,M/L = 1, and attraction R = 1, with the
rest of the parameters remaining the same as in figure 4. (a) and (c) show the evolution of
interface position S and interfacial surfactant Γ for times t = 0.2, 0.5, 10, 20, 30 and 37.02. In
this, and subsequent figures, the arrows show the direction of increasing time. (b) shows the
constituents of (2.40) at t = 37.02, that is, just before breakup: the acceleration term −wwz

(dashed line), the sum of the remaining terms in the right-hand side of (2.40) (dotted line), and
wt (dot-dashed line). (d ) shows the final satellite shape (S and −S) allowing one to see where
the maximal acceleration terms shown in (b) are of maximum effect.

surfactant concentrations (at the edges of the domain and at the centre) into the
thinned regions. These, however, merely act to delay rather than prevent the breakup
event and decrease the size of satellite drops (as shown in figures 6b and 7a).

The larger satellites are created by effects due to the severe nonlinearity of the
equation of state, in particular by the plateau in surface tension that occurs for
Γ > Γc. The evolution of the flow profiles for the M/L = 1 and R = 10 case is
shown in figure 13. Several features are striking, in particular the nonlinear equation
of state relating γ to Γ forces a very sharp change in the surface tension. Thus
if Γ > Γc the surfactant dynamics are virtually irrelevant as the surface tension is
constant. However, once enough surfactant has been swept away from the breakup
region sufficiently rapidly that it cannot be replenished from the bulk via adsorption
and Γ drops below Γc, then the surface tension locally increases and a Marangoni
stress, Γz/S, decelerates the jet. This is best seen in figure 14(b) and its effect on Smin is
evident in figure 14(c); the time, t = 30, is chosen to be just after Γ decreases beyond
the critical value. There are two main differences between these satellites and the more
conventional ones, discussed in the previous paragraph. First, inertia is irrelevant to
the mechanism described; in fact, simulations (not shown) in the Stokes limit give
virtually identical satellites. Secondly, the satellites form much earlier in time and
their size is set by the sudden deceleration imposed by the Marangoni stresses. The
point of similarity is that the satellites are created by localized decelerations that
eventually cause local flow reversal.

Inspection of figure 4 reveals that the M/L = 1, R = 10 case has a much larger
satellite than when M/L = 10, R = 10. It is interesting to briefly explore the
mechanism behind this decrease. First, one notes that due to the enhanced mass
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Γ , bulk c surfactant and surface tension γ for times t = 20, 30, 40, 48.6 with the emergence of
a large satellite evident even at early times.
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Figure 14. Satellite formation for M/L = 1 and R = 10 with the rest of the parameters
remaining the same as in figure 4. (a) shows the profiles of S and Γ for t = 30 which is just
after the interfacial surfactant Γ drops below the critical value Γc . (b) shows an enlarged view
of final satellite profile and the Marangoni contribution to (2.40) at t = 30. (c) shows Smin

versus time with t = 30 circled.

of surfactant the interfacial surfactant remains above the critical plateaux value,
Γc, until late times. Thus the jet thins considerably before the deceleration due to
Marangoni begins. In figure 15, we show S and Γ at t = 53.9, just after Γ drops below
Γc; at this time, there is no satellite formation. However, the effect of the Marangoni
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Figure 15. Satellite formation for M/L = 10 and R = 10 with the rest of the parameters
remaining the same as in figure 4. (a) shows the profiles of S and Γ for t = 53.9 which is just
after the interfacial surfactant Γ drops below the critical value Γc . (b) shows an enlarged view
of final satellite profile and the Marangoni contribution to (2.40) at t = 53.9. (c) shows Smin

versus time with t = 53.9 circled.

stresses on Smin is clear with the deceleration causing a slight kink in the curve at
t = 53.9 (this is circled in the figure). The Marangoni stress for t = 53.9 is shown in
figure 15 and this initial point of deceleration sets the final satellite size; a smaller
protuberance is created by the slight movement of the maximum in Marangoni stress
as time increases.

The case of M/L = 10 and R = 1 shown in figure 4 is interesting since the shape
of the interface near the origin is markedly different from the other cases presented
in this figure. Despite the relatively large mass of surfactant present, the interfacial
surfactant concentration is not maintained above the critical plateau value Γc. This is
because for R = 1 the surfactant prefers to remain within the bulk, and so strongly
nonlinear effects from the equation of state do not play a role. The satellites form
just before breakup occurs. The time scale for this final pinch-off event is illustrated
in figure 16(a, b) that shows almost flat central portions at t = 42.25 and breakup
at t = 43.76; the dynamics are not similar to the larger satellite formation process
discussed previously.

Even though R is relatively small, there is a flux of surfactant from the bulk to
the interface in the thinned region that weakly replenishes the surfactant there. This
creates a local Marangoni stress that advects fluid away from the flow origin. This is
shown in figure 16 for t = 42.25; the local additional acceleration correlates with the
inner edge of the larger satellite. This creates local thinning near the origin and forces
local breakup, which corresponds to a localized restarting of the breakup process
but now for a much thinner jet with little surfactant present. The simulations yield
a tiny localized satellite at the flow origin, as shown in figure 16(a). Although it is
not possible to track the thread evolution beyond the point shown in figure 16, one
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Figure 16. The near breakup behaviour for M/L = 10 and R = 1 with the rest of the
parameters remaining the same as in figure 4. (a) and (b) show the profiles of interface
position S and interfacial surfactant Γ for t = 42.2, 43.76 just as the satellites form and at
breakup. (b) also shows the Marangoni contribution to (2.40) while (c) shows S and −S to
emphasize the axisymmetric nature of the final satellite shapes.

possible scenario involves breakup being accompanied by the formation of satellites
that corresponds to the small drop at the origin and the larger bulges on either side
of it; another scenario involves the retraction of the bulges into the main thread,
leaving a small satellite at the origin.

4. Conclusions
We have studied the breakup of a thread laden with surfactant at high concentration

above the CMC. A model for the breakup dynamics has been developed based on
the long-wave approximation. This model comprises coupled evolution equations
for the interface, the axial velocity component and the concentration of surfactant at
the interface and in the bulk where it exists in the form of monomers and micelles
(provided the concentration exceeds the CMC). A nonlinear equation of state is
used for closure, which accounts for the formation of a surface tension plateau at
high surfactant concentrations. The results of our numerical simulations demonstrate
the formation of large satellites, which, at sufficiently high concentrations, and for
surfactants with a strong affinity to the interface, are driven by Marangoni stresses.
This is a markedly different mechanism to that usually required for satellite formation
which requires inertial effects. The mechanism underlying the formation of the larger
satellites is new and has not been commented on previously in the literature. There
remains much to be explored in the interfacial mechanics of flows above the CMC
and the model presented here provides a template for future studies and extensions, it
is envisaged that this will provide motivation for fully three-dimensional axisymmetric
nonlinear simulations and further experimental work.
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